
The CLCP examination utilizes standard scores for determining pass/fail statuses of the

respective CLCP examinees. Standard scores express the examinee’s score’s

mean in terms of the standard deviation of the distribution (Anastasi, 1976). The score is based

upon the measures of central tendency, more specifically; the mean of group scores and where

these scores fall within a normal distribution

these respective scores are from the mean. The normal distribution is illustrated in Figure 1.

Figure 1 – Normal Distribution

These scores are referred to as Type II A scores since they focus

that are expressed as the number of standard deviations between any specified score and the mean

(Lyman, 1978). Thus, a change in norm group influences the level of score, which is noted during each

individual administration of the CLCP exam. The cut score seems to fluctuate after several test

administrations due to the tendency for the group mean to fluctuate.

Standard Deviation: The standard deviation represents the variability of a test score from the

mean, and as a group of scores is reviewed, the variability, or the variance of individual scores from the

mean, provides a good indicator of test stability, or test score reliability. The simplest indicator of

variance among test scores is the range, whereby the lowes

score are identified and the total units between the two extreme scores are calculated as the range

(Anastasi, 1976). Glass and Stanley (1970) documented two levels of score variance as applied to range;

1) inclusive range and 2) exclusive range. The exclusive range is the difference between the largest and

smallest scores of a group. For example, a group of 10 persons took the CLCP exam and achieved

scores of 72, 68, 82, 79, 75, 76, 83, 89, 62, and 86. The mean
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Where ߪ = Symbol for Variance

x2= Scores squared

Σx2= sum of squared scores

N = Total number of scores

Using the following scores from the earlier example, the variance is determined

Table 1 – Illustration of Variance Calculation

Score and Mean Calculation
(X and X)

71
66
90
88
89
72
65
67
80
95

∑X = 783 

X = ∑X = 783 = 78.3
N 10

Therefore, using the formula

The variance is calculated as follows:

ߪ ൌ
Σx2

ܰ

= sum of squared scores

= Total number of scores

Using the following scores from the earlier example, the variance is determined

Illustration of Variance Calculation

Score – Mean
(X – X)

Sum of Score/Mean
Differences Squared

71 – 78.3
66 – 78.3
90 – 78.3
88 – 78.3
89 – 78.3
72 – 78.3
65 – 78.3
67 – 78.3
80 – 78.3
95 – 78.3

53.29
24.60

136.89
94.09

114.49
39.69

176.89
127.69

2.89
278.89

∑X2 = 1,049.41

ߪ ൌ
Σx2

ܰ

follows:
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Using the following scores from the earlier example, the variance is determined as follows:

of Score/Mean
Differences Squared

= 1,049.41



The Standard Deviation is calculated by determining the square root of the variance, illustrated in

the following formula:

Where SD = Standard Deviation

√ = “Take the square root of”

 ∑ = “Add the values of” 

X = Raw score on CLCP exam

X = Mean of Group of Scores

N = Population of test scores

Thus, the square root of the variance of 104.94 totals

deviation of 10.

Cut Score Determination:

deviation and the central tendency of the gr

the central tendency curve is warranted to better understand how the cut score is determined and applied

after each test administration. The standard deviations that comprise the “normal” curve,

of scores is illustrated in Figure 2.
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The Standard Deviation is calculated by determining the square root of the variance, illustrated in
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Figure 2 – Standard Deviation and Score Distributions of the Normal Curve

The “central tendency” of population trait factors and test scores evolved from the work of the

Belgian mathematician Adolf Quetelet (1796

law of error to the distribution of human data, both biological and social (Shertzer & Linden, 1979).

Quetelet hypothesized that he middle of the distribution curve (Figures 1 and 2) is where the smallest

distribution of errors occur, which reflects the ideal that nature sought in human life development. Thus,

the “average” person was Quetelet’s belief of nature’s ideal creation, while deviations away from the

average were nature’s errors (Shertzer & Linden, 1976

of individual differences and the application of statistical methods in the study of human behavior.

Bolton (1987) noted that most values, whether they be test scores, human characteristics (i.e.,

height, weight, age), or psychological variables cluster around the central point of the Bell curve

(Figures 1 & 2), with fewer values at greater distances from the average. Regarding interpretations

based on the “normal” distribution of traits or scores, 34.13% o

the mean and a point that is one standard deviation away from it. When considering two standard

deviations, one above and one below the mean, 68.26% of the population falls within this range (Lyman,

1978). In short, approximately two thirds of the area (scores, etc.) will fall within one standard deviation

of the mean in most distributions, either above the mean or below the mean. Only one third of the cases

will be more than one standard deviation

meeting the cut-off range within one standard deviation below the mean.

Standard Deviation and Score Distributions of the Normal Curve

The “central tendency” of population trait factors and test scores evolved from the work of the

Belgian mathematician Adolf Quetelet (1796-1874), who was the first scientist to apply Gauss’ normal

law of error to the distribution of human data, both biological and social (Shertzer & Linden, 1979).

Quetelet hypothesized that he middle of the distribution curve (Figures 1 and 2) is where the smallest

ution of errors occur, which reflects the ideal that nature sought in human life development. Thus,

the “average” person was Quetelet’s belief of nature’s ideal creation, while deviations away from the

average were nature’s errors (Shertzer & Linden, 1976). Thus, Quetelet encouraged systematic studies

of individual differences and the application of statistical methods in the study of human behavior.

Bolton (1987) noted that most values, whether they be test scores, human characteristics (i.e.,

eight, age), or psychological variables cluster around the central point of the Bell curve

(Figures 1 & 2), with fewer values at greater distances from the average. Regarding interpretations

based on the “normal” distribution of traits or scores, 34.13% of the area under the curve lies between

the mean and a point that is one standard deviation away from it. When considering two standard

deviations, one above and one below the mean, 68.26% of the population falls within this range (Lyman,

1978). In short, approximately two thirds of the area (scores, etc.) will fall within one standard deviation

of the mean in most distributions, either above the mean or below the mean. Only one third of the cases

will be more than one standard deviation away from the mean. Thus, the CHCC accepts test scores as

off range within one standard deviation below the mean.
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A review of the earlier test-

determining the cut score. Please note the scores in Table 2.

Table 2 – Cut Score Determination

Scores

71
66
90
88
89
72
65
67
80
95

.

A review of Figure 2 suggests that roughly 68% of the population of scores should fall within one

standard deviation from the mean score. This constitutes one standard deviation above and below the

mean. We know that one standard deviation above the mean i

this is where approximately 34% of the population should have scored, and that it remains above the

mean suggesting an acceptable demonstration of knowledge as presented on the test. The key issue

remains with one standard deviation below the mean. Approximately 34% of the population should have

fallen within this distance below the mean, suggesting a total of 68% of the test scores should

accumulate at this point on the “normal” distribution curve. Given the stand

mean score of 78.3, one standard deviation below the mean reveals a test

( AcceptableMinimumSDX 
__

cut score for passing the exam, while anyone achieving a 67 score and lower will not be credited with a

passing score. After reviewing our example one finds CLCP candidates with scores of 65, 66, and 67

failed to meet the cut score and will have to retake the exam.

-scores will illustrate the application of the standard deviation towards

score. Please note the scores in Table 2.

Cut Score Determination

Standard Deviation Relationship to the Mean

__

X = 78.3

SD = 10

1 SD Below the
__

X = 68.3

review of Figure 2 suggests that roughly 68% of the population of scores should fall within one

standard deviation from the mean score. This constitutes one standard deviation above and below the

mean. We know that one standard deviation above the mean is without doubt a passing score because

this is where approximately 34% of the population should have scored, and that it remains above the

mean suggesting an acceptable demonstration of knowledge as presented on the test. The key issue

tandard deviation below the mean. Approximately 34% of the population should have

fallen within this distance below the mean, suggesting a total of 68% of the test scores should

accumulate at this point on the “normal” distribution curve. Given the standard deviation of 10 and the

mean score of 78.3, one standard deviation below the mean reveals a test-score of 67.7, rounded up to 68

Score ). Thus, a test score of 68 suggests that this person meets the

while anyone achieving a 67 score and lower will not be credited with a

passing score. After reviewing our example one finds CLCP candidates with scores of 65, 66, and 67

failed to meet the cut score and will have to retake the exam.
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The current statistical review regarding the cut score is illustrated in Figure 3.

Figure 3 – Current Cut Score Statistical Data

N of cases

Minimum

Maximum

Mean

Standard Dev

Std. Error

C.V.
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Current Cut Score Statistical Data

868

55.00

93.00

74.20

6.900

0.234

0.093

67.3
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